MASTER OF COMPUTER APPLICATIONS (SPECIALIZATION IN DATA SCIENCE)

Semester I

Advanced Data Structures and Algorithms using Python

- 1. Problem solving concepts
- 2. Abstract Data Types
- 3. Linear Data Structures
- 4. Binary Trees Binary Search Trees
- 5. AVL Trees
- 6. Tree Traversals
- 7. Hashing
- 8. Sorting Techniques
- 9. External Sorting
- 10. Topological Sort
- 11. Graph connectivity
- 12. Random walks on graph
- 13. adversary models
- 14. Randomized algorithm
- 15. a min-cut algorithm
- 16. Random Treap
- 17. Mulmuley games,
- 18. Markovs chains

Statistics for Computer Science

- 1. Bayes theorem
- 2. Discrete random variable
- 3. Continues random variable
- 4. Moment generating function
- 5. Joint distribution
- 6. Marginal and conditional distribution
- 7. Central limit theorem
- 8. Chebyshev's inequality
- 9. Large and small samples test
- 10. Mean and variance
- 11. Attributes and contingency table
- 12. Stochastic process
- 13. Time series
- 14. Auto regressive moving average models
- 15. Jenkins model
- 16. Classification
- 17. randomized design
- 18. randomized block design
- 19. Latin square design

Database Technology

- 1. DBMS Architecture
- 2. Data Modelling
- 3. Normalization
- 4. Structured Query Language
- 5. Query Processing
- 6. Query optimization
- 7. Storage and File organization
- 8. Object Oriented Databases
- 9. Transaction
- 10. Concurrency Recovery
- 11. Database Administration
- 12. ODBMS & ORDBMS
- 13. Distributed DATABASE
- 14. Parallel DBMS
- 15. Semi Structured
- 16. Unstructured Data Base

Object Oriented Programming using Java

- 1. Classes and Instances
- 2. Class Hierarchies
- 3. String handling
- 4. Packages
- 5. Interfaces
- 6. I/O STREAMS
- 7. Exception Handling
- 8. Multithreading
- 9. Networking
- 10. Client-Server Networking
- 11. Networking Interfaces and Classes
- 12. Working with Datagrams
- 13. Collection classes
- 14. Dictionary
- 15. Hash table

18. XML and databases

Computer Networks

- 1. Categories of Networks
- 2. Communication model
- 3. Data transmission concepts
- 4. Protocol architecture
- 5. OSI
- 6. TCP/IP
- 7. Data link control
- 8. Error Detection and Error Correction
- 9. MAC
- 10. Ethernet
- 11. Bluetooth
- 12. Bridges
- 13. Network layer
- 14. Circuit switching
- 15. Packet switching
- 16. IPV6 and ICMP
- 17. Routing Protocols
- 18. Transport layer
- 19. Transport for Real Time Applications
- 20. APPLICATION LAYER

Semester II

Web Design and Development	Data Warehousing and Data Mining
1. HTML5	1. Functionalities
2. CASCADING STYLE SHEET	2. Integrate with Database
3. Embedding Style Sheets	3. Data Preprocessing
4. Margins and Padding	4. DATA WAREHOUSING
5. JAVASCRIPT	5. OLAP Technology
6. Document Object Model	6. Multidimensional Data Model
7. Event Handling	7. Data Warehouse Architecture
8. Controlling Windows & Frames	8. Data Generalization
9. Media Management	9. Frequent Patterns
10. Object-Oriented Techniques in	10. Associations and Correlations
JavaScript	11. Classification and Prediction
11. JSON	12. Classification Algorithms
12. jQuery	13. Cluster Analysis
13. AJAX with jQuery	14. Clustering Methods
14. PHP	15. Outline analysis
15. Angular JS	
16. ZEND Framework	
17. MySQL database	

MACHINE LEARNING	SOFTWARE ENGINEERING
1. Supervised learning	1. Process models
2. Linear Discriminants	2. Prescriptive Process Models
3. Linear Regression	3. Process Technology
4. Multilayer perceptron	4. Requirements Engineering
5. Back propagation	5. Developing use cases
6. CLASSIFICATION ALGORITHMS	6. Negotiating and validating
7. Classification of regression trees	requirements
8. Probability and Learning	7. UML Models
9. k-Means algorithm	8. Class based modelling
10. Vector Quantization	9. Design Process
11. Principal component analysis	10. Software Architecture
12. Simulated annealing	11. Class Based Components
13. OPTIMIZATION TECHNIQUES	12. Web Apps
14. Markov Chain Monte Carlo methods	13. User Interface Design
	14. TESTING STRATEGIES
	15. Object Oriented Software Testing
	16. AGILE METHODOLOGY
	17. SPI Process
	18. CMMI

Semester III

SOFTWARE TESTING AND QUALITY ASSURANCE	DevOps
1. Testing Axioms	Agile and DevOps
2. Test Technique	2. DevOps Tool
3. Configuration Testing	Workflow of DevOps
4. Compatibility Testing	4. JIRA
5. Foreign Language Testing	5. VERSION CONTROL SYSTEMS
6. Usability Testing	6. Version supporting tools
7. Test Documentation Techniques	7. CONTINUOUS INTEGRATION
8. Test Planning	8. Jenkins
9. Test Case Tracking	9. Maven
10. Bug Tracking Systems	10. TeamCity
11. Common Project Level Metrics	11. TESTING FRAMEWORKS
12. AUTOMATION TESTING	12. Automation Tools
13. Software Test Automation	13. JUnit5 Testing Framework
14. QUALITY ASSURANCE	14. Behavior Driven Development-
15. Capability Maturity Model	cucumber
16. ISO 9000	

Presen	tation skill and technical writing	
1.	Listening skills	
2.	Cloze Exercises	
3.	Vocabulary building	
4.	Reading Skills	
5.	Voice, pace and gesture	
6.	Technical presentations	
7.	Strategies in GD	
8.	Mock GD	
9.	Body Language	
10.	. Conversation Practice	
11.	. Role Plays	
12.	. Netiquette	
13.	. Email etiquette	
14.	. Mobile phone etiquette	
15.	. Effective writing	
16.	. Coherence	
17.	Project Writing	

SEMESTER IV

Personality Development	

1.	Individual	Uniqueness
----	------------	------------

- 2. Formal Theories
- 3. Personal Theories
- 4. Biological Measures
- 5. Behavioral Assessment
- 6. Projective Techniques
- 7. Self-Presentation
- 8. Social Comparison
- 9. Self-esteem
- 10. Self as a target of prejudice
- 11. Judging the social world
- 12. Behaviour and Attitudes
- 13. Self presentation
- 14. Self justification
- 15. Self perception
- 16. Time Management
- 17. Innovation and Creativity
- 18. Stress Management
- 19. Youth Development
- 20. Influence of Globalization

ELECTIVES

ELECTIVE II

WEB ANALYTICS	BIG DATA ANALYTICS
1. Clickstream data	BD in Marking, Medical
2. Web logs	2. Crowd sourcing analytics
3. Web beacons	3. Firewall analytics
4. Packet sniffing	4. NoSQL
5. DATA ANALYSIS	5. Master-slave replication
6. web analytic tool	6. Reduce calculations
7. Key Performance Indicators	7. Hadoop
8. Lab usability testing	8. Hadoop pipes
9. Heuristic evaluations	9. HDFS concepts
10. URI	10. MapReduce
11. URL parameters	11. Map-reduce and YARN
12. Geotagging	12. Job scheduling
13. Google web analytics	13. Hbase clients
14. On-page interacting tracking	14. Hive
15. Social Media Analytics	15. HiveQL
16. Triangulating mobiles	16. HiveQL queries

ELECTIVE III

R PROGRAMMING	BIG DATA FRAMEWORK
1. R – ENVIRONMENT SETUP	1. Four V's of big data
2. R Command Prompt	2. Distributed File System
3. Vectors	3. Spark streaming
4. Lists	4. functions in scala
5. Operators	5. Try and Match Expressions
6. Decision Making	6. Control statements in scala
7. User Function	7. RDD transformations
8. Data FRAMES	8. Data partitioning in RDDs
9. Factors	9. Data File formats
10. Tables	10. Compression
11. Control structures	11. Spark SQL
12. Function	12. Accumulators
13. Function and Object	13. Fault tolerance

SEMANTIC WEB	DATA VISUALIZATION TECHNIQUES AND TOOLS
1. Design Decisions	Data Visualization process
2. Web Architecture	2. Spatial Data
3. Web Technologies	3. Graphic Design
4. Layered Approach	4. Graphical Integrity
5. Distributing Web Resources	5. Data Driven Document (DDD)
6. RDF Data Model	6. Analysis graphs
7. Direct Inference System	7. Statistical Graphs
8. SPARQL	8. Layouts
9. SPARQL Queries	9. Geo Mapping
10. Ontology Languages	10. Color Processing
11. OWL2 with RDF/RDFS	11. Zooming
12. OWL2 Profiles	12. Viewing
13. Monotonic Rules	13. Multiform views
14. Rule Interchange Format	
15. Ontology Engineering	

ELECTIVE IV

DATA CLASSIFICATION METHODS AND EVALUATION	PRINCIPLES DEEP LEARNING
1. Classification Techniques	1. Machine Learning
2. Feature Selection	2. Linear Neuron
3. Filter Models	3. Forward Neural Networks
4. Algorithms for Streaming Features	4. Delta Rule

- 5. Probabilistic Models
- 6. C4.5
- 7. CART
- 8. Incremental Decision Tree
- 9. Rule-Based Classification
- 10. Radial Basis Function Networks
- 11. Support Vector Machines
- 12. Neural Networks
- 13. Big Data Classification
- 14. Multimedia Classification
- 15. Time Series Data

- 5. Fast-Food Problem
- 6. Convolutional Neural Networks
- 7. TENSORFLOW
- 8. Memory Augmented Neural Networks
- 9. Differentiable Neural Computers
- 10. Temporal Linking
- 11. Deep Reinforcement Learning
- 12. Markov Decision Processes
- 13. Pole-Cart
- 14. Deep Learning in Health Care Application